
KIT-Sch-GE (2) 

Authors: Katharina Löffler, Tim Scherr, Ralf Mikut 

Email: ralf.mikut@kit.edu  

Platform: Linux (tested on Ubuntu 16.04 and 18.04) 

Prerequisites: ≥ 16 GiB RAM, ≥ 12 GiB VRAM (CUDA = 11.0), Gurobi installed (for tracking) 

 

KIT-Sch-GE (2): SUMMARY 

Our method follows the tracking by detection paradigm. For the segmentation step, a deep learning-

based prediction of cell distance and neighbor distance maps is used followed by a watershed post-

processing. The tracking step is based on a displacement estimation in combination with a matching 

formulated as maximum flow minimum cost problem. A description of the segmentation method 

provides [1] and some minor improvements are summarized in [2]. The tracking method is described in 

[3]. The code repository is available at https://git.scc.kit.edu/KIT-Sch-GE. 

 
KIT-Sch-GE (2): PREPROCESSING 

This step involves a minimum-maximum normalization of the single frames into the [−1, 1] range (whole 

volume for 3D data). The contrast limited adaptive histogram equalization (CLAHE) can be applied with 

the parameter apply_clahe. The inputs for the segmentation CNN are zero-padded if necessary. 

Downsampling can be applied with a scaling parameter s ≤ 1. 

 

KIT-Sch-GE (2): SEGMENTATION 

Architecture. Since most of the provided reference segmentation annotations are 2D, our convolutional 

neural network architecture is based on the 2D U-Net architecture [4]. However, instead of using a single 

decoder path, two parallel decoder paths are used. This allows each decoder path to focus on features 

related to the desired output. The maximum pooling layers are replaced with 2D convolutional layers 

with stride 2 and kernel size 3 and batch normalization layers are added. The number of feature maps is 

doubled from 64 feature maps to a maximum of 1024 and halved in each decoder path correspondingly. 

The ReLU or the Mish activation function [5] is used within the network and a linear activation for the 

output layer. 

 
Cell Distances and Neighbor Distances. The modified 2D U-Net is trained to predict cell distance and 

neighbor distance maps. In the cell distance map, each pixel belonging to a cell represents the 

normalized distance to the nearest pixel not belonging to this cell, whereas in the neighbor distance map 

mailto:ralf.mikut@kit.edu
https://git.scc.kit.edu/KIT-Sch-GE


each pixel belonging to a cell represents the inverse normalized distance to the nearest pixel of the 

closest neighboring cell. To be able to handle elongated cells and to simplify the post-processing, the 

normalization and scaling step used in [1] has been adapted, resulting in fewer manually tunable 

parameters. With the normalization of [1], large areas with high neighbor distances could occur for 

elongated cells making the post-processing difficult (e.g., for Fluo-C2DL-MSC). In addition, the grayscale 

closing has been replaced with a bottom-hat-transform-based closing which fits better into the neighbor 

distance maps. In [2], the influence of these minor modifications is evaluated. 

 
Inference. The preprocessed frames are fed into the CNN (slice-wise for 3D data). Our executable enables 

multi-GPU support and the batch size can be adjusted to the available VRAM.  

 
Post-Processing. First, the predicted cell distance and neighbor distance maps are smoothed slightly 

using a Gaussian kernel with fixed size. The smoothed cell distance map is thresholded with the 

threshold Tmask to extract the region to flood with a watershed algorithm. Markers are extracted by 

calculating the difference between the smoothed cell distance map and the smoothed and scaled 

neighbor distance map. The obtained result is thresholded with the threshold Tmarker. Markers with a size 

smaller than 10% of the mean marker size in a frame are removed. If no marker is found in a frame, the 

mask threshold is lowered till at least one object is found or Tmarker < Tmask. With the parameter 

apply_merging, touching cells with only little neighbor distance information in the touching region can 

be merged (for cells split due to their shape, such as dumbbell shaped cells). This can avoid 

oversegmentation (e.g., for BF-C2DL-MuSC). Markers can be fused in axial direction (since 3D data are 

only processed slice-wise) with a kernel of shape (3, 1, 1) using the fuse_z_seeds parameter. For 3D data, 

local maxima are used as markers if more than N_splitting cells are detected in a frame with the method 

described above. Furthermore, in that case merged cell nuclei are detected if their volume is bigger than  

7

5
  times the mean cell volume at that single frame. Detected merged cells are tried to split using 

iteratively a higher marker threshold Tmarker  {0.5, 0.6, 0.75}. A movement-based region of interest 

extraction (artifact correction) can be applied with the parameter artifact_correction which only works 

well for dense cell packaging, (e.g., for BF-C2DL-HSC). Finally, for datasets with a field of interest (FOI) 

defined (e.g., Fluo-N2DL-HeLa), a FOI correction is applied. 

 

The post-processing starts with a slight 2D/3D Gaussian smoothing of the cell and neighbor distance 

predictions with a fixed smoothing kernel. Then, the region to flood with a 2D/3D watershed is extracted 

out of the smoothed cell distance prediction using the threshold Tmask. To get markers, the smoothed 



neighbor distance prediction is squared (and scaled slightly applying the tangent function) and 

subtracted from the smoothed cell distance prediction. The obtained result is thresholded with the 

threshold Tmarker. Markers with an area smaller than 10% of the mean marker area in a frame are filtered 

out. If no marker is found in a frame, the mask threshold is lowered till at least one object is found or 

Tmarker < Tmask. Markers can be closed in axial direction (since 3D data are only processed slice-wise) with a 

kernel of shape (3, 1, 1) using the fuse_z_seeds parameter. A movement-based region of interest 

extraction (artifact correction) can be applied with the parameter artifact_correction which only works 

well for dense cell packaging (e.g., for BF-C2DL-HSC). For 3D data, local maxima are used as markers if 

more than N_splitting cells are detected with the method described above. Furthermore, in that case 

merged cell nuclei are detected if their volume is bigger than  
7

5
  times the mean cell volume at that single 

frame. Detected merged cells are tried to split using iteratively a higher marker threshold Tmarker  {0.5, 

0.6, 0.75}. In the end, the for some data sets needed field of interest (FOI) correction is applied (which 

may induce errors for cells directly at the FOI borders).  

 
Training Datasets. For the training, crops of the size 320 × 320 pixels are generated automatically and 

reproducibly from the available segmentation GTs and STs. Based on the cell size statistic of the GTs and 

STs, the scale parameter s and a search radius (to reduce computation time) are set automatically. For 

fully annotated 3D data, slices of interest are selected using the image mean and the slice mean. In 

addition, slices from 3D annotations are processed with 2D morphological opening and closing 

operations with cell size specific kernels to remove 3D artifacts within a slice of interest and to close 

emerging gaps. A training/validation split of 80%/20% is used. The tracking GTs are used to check roughly 

if almost all cells in a segmentation GT crop are annotated. For datasets with fewer than 30 generated, 

fully annotated crops, also crops which have at least 80% of the cells annotated are included. Only STs 

from frames without any annotated GT cell are used. The fraction of ST crops relative to the number of 

GT crops is set to 33% for the training set and to 25% for the validation set. However, if less than 75/15 

crops (training/validation) per cell type are available, more ST crops are included until 75/15 crops are 

available in total (or all possible ST crops have been included).  

 
Training Process. To learn the cell and the neighbor distances, PyTorch’s SmoothL1Loss is used and both 

losses are added. During training flipping, scaling, rotation, contrast changing, blurring and noise 

augmentations are applied. Models are trained for a maximum number of epochs which depends on the 

training dataset size: 



𝑁epochs
max =

{
 
 
 
 

 
 
 
 
200   if 𝑁crops

train +𝑁crops
val  ≥ 1000,                                     

240   if 1000 > 𝑁crops
train + 𝑁crops

val  ≥ 500,                       

320   if 500 > 𝑁crops
train +𝑁crops

val  ≥ 200,                          

400   if 200 > 𝑁crops
train +𝑁crops

val  ≥ 100,                          

480   if 100 > 𝑁crops
train +𝑁crops

val  ≥ 50,                            

560   if 𝑁crops
train +𝑁crops

val < 50.                                           

 

A batch size of 8 is used (effective batch size of 4 since two GPUs are used). For each training dataset, 

models are trained with the Ranger optimizer (combines RAdam [6], LookAhead [7], and gradient 

centralization [8]) and Mish activation, and models with the Adam optimizer [9] and ReLU activation. In 

both cases, a learning rate scheduler and an early stopping criterion are used (see also Table 1 in [2]). 

Furthermore, Ranger models are trained a second time for 10% · 𝑁epochs
max  epochs with cosine annealing. 

Models can also be pre-trained or retrained (i.e., our Fluo-C2DL-Huh7 model is a model trained on GTs 

and STs of 13 other datasets and has been retrained on Fluo-C2DL-Huh7 GTs. 

 

Model Selection. All trained models are evaluated on the provided training datasets and the best model 

in terms of OPCSB is selected. Thereby also multiple thresholds Tmask, and Tmarker can be evaluated. 

 
KIT-Sch-GE (2): TRACKING 

The tracking task is split in three steps: (1) coarse tracking of segmented objects to find potential 

matching candidates, (2) creating a tracking graph by solving a coupled minimum cost flow problem, and 

(3) modifying the tracking graph to correct segmentation errors automatically. A detailed description of 

our proposed tracking algorithm is given in [3]. 

 
Coarse Tracking of Segmented Objects. Segmented objects are coarsely tracked over a time span ∆t by 

defining a region of interest (ROI) to find potential matching candidates in successive time points. 

 
Create Tracking Graph. A graph is constructed which models cell behavior such as movement, 

appearance, disappearance, mitosis, as well as the segmentation errors: false negatives, under- and 

over-segmentation of two or more objects. Edges are constructed between nodes corresponding to a 

segmented object and all nodes corresponding to its potential matching candidates. To find optimal 

paths through the constructed graph, and assign segmented objects to tracks, a coupled minimum cost 

flow problem is formulated and solved using integer linear programming. The formulation of the coupled 

minimum cost flow problem is inspired by [10], however with the extension to model false negatives as 



well as over- and under-segmentation of two or more objects. The costs assigned to edges are only 

based on position-based features and without previous training or parameter tuning to the selected 

dataset. 

 
Correcting Segmentation Errors. The tracking graph from the previous step is modified by applying a set 

of graph operations: removing edges, merging tracks, and splitting tracks, to correct segmentation errors 

automatically. 

 
Parameter Selection. For all datasets, we set the two parameters delta_t and default_roi_size. The 

former sets the maximum time span tracks with missing segmentation masks can be re-linked. The latter 

provides a scaling size of the ROI, resulting in a roi size of default_roi_size times the average size of the 

segmented objects within a sequence. 

 
REFERENCES 

1. Scherr T, Löffler K, Böhland M, Mikut R. Cell segmentation and tracking using CNN-based distance 

predictions and a graph-based matching strategy.  PLoS One 15, e0243219 (2020). 

2. Scherr T, Löffler K, Neumann T, Mikut R. On improving an already competitive segmentation 

algorithm for the Cell Tracking Challenge - Lessons learned.  bioRxiv 2021.06.26.450019 (2021). 

3. Löffler K, Scherr T, and Mikut R. A graph-based cell tracking algorithm with few manually tunable 

parameters and automated segmentation error correction.  PLoS One 16, e0249257 (2021). 

4. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image 

segmentation. In Proceedings of Medical Image Computing and Computer-Assisted Intervention, 234-

241 (2015). 

5. Misra D. Mish: A self regularized non-monotonic activation function. arXiv: 1908.08681 (2020). 

6. Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J. On the variance of the adaptive learning rate and 

beyond.  arXiv: 1908.03265 (2019). 

7. Zhang MR, Lucas J, Hinton G, Ba J. Lookahead optimizer: k steps forward, 1 step back. arXiv: 

1907.08610 (2019). 

8. Yong H, Huang J, Hua X, Zhang L. Gradient centralization: A new optimization technique for deep 

neural networks. arXiv: 2004.01461 (2020). 

9. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980 (2014). 

10. Padfield D, Rittscher J, Roysam B. Coupled minimum-cost flow cell tracking for high-throughput 

quantitative analysis. Medical Image Analysis 15, 650-668 (2011).  


